Math 1433

16 October 2023

Raise you hand if you have used writing like
$x \in \mathbb{R}$ before.

Set notation

A set is a collection of objects. In this class, we will mostly be interested in collections of vectors (collections of points!).

- For a finite set, you can just list them. Example:

$$
S=\left\{\binom{3}{6},\binom{1}{1},\binom{-1}{0}\right\} .
$$

- For an infinite set, it's often better to use "set-builder" notation. Example:

$$
A=\left\{\binom{5}{y}: y \geq 0\right\}
$$

Set notation

Some specific sets have their own symbols:
\mathbb{N} is the set of all natural numbers.
\mathbb{R} is the set of all real numbers.
\mathbb{R}^{2} is the set of all points on the $x y$-plane $O R$ the set of all 2 D vectors.
\mathbb{R}^{3} is the set of all points in 3D space OR the set of all 3D vectors.

The symbol \in is used to show that an objects belongs in a set:

$$
5 \in \mathbb{N}
$$

$$
[2,10.1] \in \mathbb{R}^{2}
$$

$5 \in \mathbb{R}$

$$
\left[\begin{array}{c}
1 \\
\pi \\
\sqrt{2}
\end{array}\right] \in \mathbb{R}^{3}
$$

$$
[0,0,0] \in \mathbb{R}^{3}
$$

Linear combinations

A linear combination of some vectors is any sum of scalar multiples of those vectors.

- In symbols, \vec{u} is a linear combination of \vec{v} and \vec{w} if

$$
\vec{u}=a \vec{v}+b \vec{w}
$$

for some numbers a and b.

- For more vectors, \vec{u} is a linear combination of $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}$ if

$$
\vec{u}=s_{1} \overrightarrow{v_{1}}+s_{2} \overrightarrow{v_{2}}+\cdots+s_{n} \overrightarrow{v_{n}}
$$

for some numbers s_{1}, \ldots, s_{n}.

Linear combinations

A linear combination of some vectors is any sum of scalar multiples of those vectors.

- In symbols, \vec{u} is a linear combination of \vec{v} and \vec{w} if

$$
\vec{u}=a \vec{v}+b \vec{w}
$$

for some numbers a and b.
Example 1: Write $\left[\begin{array}{c}5 \\ 24\end{array}\right]$ as a linear combination of $\overrightarrow{v_{1}}=\left[\begin{array}{c}5 \\ -2\end{array}\right]$ and $\overrightarrow{v_{2}}=\left[\begin{array}{c}3 \\ -9\end{array}\right]$.
We want $x\left[\begin{array}{c}5 \\ -2\end{array}\right]+y\left[\begin{array}{c}3 \\ -9\end{array}\right]=\left[\begin{array}{c}5 \\ 24\end{array}\right]$, so we must solve the system $\left\{\begin{array}{c}5 x+3 y=6 \\ -2 x-9 y=24\end{array}\right.$.
Solution: $x=3, y=-10 / 3$. Therefore $\left[\begin{array}{c}5 \\ 24\end{array}\right]=\left[3\left[\begin{array}{c}5 \\ -2\end{array}\right]+(-10 / 3)\left[\begin{array}{c}3 \\ -9\end{array}\right]\right.$.

Example 2: $\left[\begin{array}{c}5 \\ 24\end{array}\right]$ cannot be written as a linear combination of $\overrightarrow{v_{1}}=\left[\begin{array}{l}5 \\ 1\end{array}\right]$
and $\overrightarrow{v_{2}}=\left[\begin{array}{c}10 \\ 2\end{array}\right]$. Why?
Equalions:

Pictures:

from 3Blue1Brown - youtu.be/k7RM-ot2NWY

In symbols, the span of \vec{v} and \vec{w} is the set

$$
\{a \vec{v}+b \vec{w}: a, b \in \mathbb{R}\} .
$$

This could be

- just the origin (here $\vec{v}=\vec{w}=\overrightarrow{0}$).
- a line through the origin (here $\vec{w}=s \vec{v}$ for some $s \in \mathbb{R}$).
- a plane. In 2D, the plane is "everything". In 3D, a plane is like an infinite flat sheet of paper.

Question: What does

$$
\{\vec{v}+b \vec{w}: b \in \mathbb{R}\}
$$

look like?

Parametric equations

Sometimes it's easiest to describe a shape using an extra variable in addition to x and y (and z in 3D).

Example 1
$\left\{\begin{array}{l}x=6 \cos (t) \\ y=6 \sin (t)\end{array}\right.$

Example 2
$\left\{\begin{array}{l}x=9^{t} \\ y=3^{t}\end{array}\right.$

Example 3
$\left\{\begin{array}{l}x=2+t \\ y=4-t\end{array}\right.$

> Example 3 describes a straight line.

Lines

The line through point \vec{p} parallel to the vector \vec{d} can be described by the equation

$$
\vec{r}=\vec{p}+t \vec{d}
$$

the variable t is a parameter (sometimes s is used instead).

A vector parallel to a line is called a direction vector for that line.

This whole slide is good for 2D or 3D!

Lines

In 3D, the single vector equation $\vec{r}=\vec{p}+t \vec{d}$ is really the three equations:

$$
\left\{\begin{array}{l}
x=x_{0}+a t \\
y=y_{0}+b t \\
z=z_{0}+c t
\end{array}\right.
$$

This is another common format for the for the line through $\left(x_{0}, y_{0}, z_{0}\right)$ parallel to $\vec{d}=[a, b, c]$.

Lines and planes

You will need to be able to work both visually and with equations/symbols about

- lines in 2D

- lines in 3D

- planes in 3D

Task 1: Give an equation for the line L that goes through the point $(1,0,1)$ and is parallel to the vector $[5,1,6]$.

$$
x=1+6 E, y=E, z=1+6 E
$$

Creating an equation for a line is "easy" when you are given

- a point on the line and
- a direction vector.

It can be harder when you have to figure out one or both of those from other information.

Give an equation for the line L_{1} that goes through the point $(6,2,1)$ and is parallel to the line

$$
L_{2}: \quad x=4+2 t, \quad y=-1+4 t, z=5-t
$$

Direction vector of L_{2} is $[2,4,-1]$ (Chat's what's multiplied by 8$)$.
Using this as \vec{d} for L_{1} will make the lines parallel!
Line through $(6,2,1)$ parallel to $[2,4,-1]$ is

$$
x=6+2 k, y=2+4 k, z=1-k
$$

Remember: Line through point \vec{p} with direction vector \vec{d} has equation $\vec{r}=\vec{p}+t \vec{d}$.

Two lines in 2D must be one of these:

- the same line,
- intersecting at exactly one point,
- parallel.
 In 2D, the only way two lines can have no points in common is when the lines are parallel.

Two lines in 3D must be one of these:

- the same line,
- intersecting at exactly one point,
- parallel (definition: having parallel direction vectors),
- skew (definition: not fitting any of the previous three categories!).
- Are the lines

$$
\begin{array}{cc}
L_{1}: & x=2-t, \quad y=1+2 t, \quad z=4+t \\
L_{2}: & x=-1+s, \quad y=7-3 s, \quad z=7+s
\end{array}
$$

intersecting, parallel, or skew?

- If they intersect, find the point where they intersect.

$$
\begin{aligned}
& \text { Incersect at }(-1,7,7) \text {. } \\
& \text { (This is } t=3 \text { and } s=0 \text {.) }
\end{aligned}
$$

Warning: these could be written

$$
\begin{array}{ll}
L_{1}: & x=2-t, \quad y=1+2 t, \quad z=4+t \\
L_{2}: & x=-1+t, \quad y=7-3 t, \quad z=7+t
\end{array}
$$

but the task would be the same.

Dok product

The dot product of two vectors $\vec{a}=\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right]$ and $\vec{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$,
also called the scalar product or inner product, is written as $\vec{a} \cdot \vec{b}$ (said out loud as "A dot B"). It is a number that can be computed as either

- $\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$
or
- $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos ($ angle between \vec{a} and $\vec{b})$.

Using

- $\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+\cdots$
- $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos$ (angle between \vec{a} and \vec{b})
together, we can find the angle between vectors.

Example: Find the angle between $\langle\sqrt{\vec{a}} \quad \vec{b}, 1\rangle$ and $\langle 0,7\rangle$.

$$
\begin{aligned}
& |\vec{a}|=\sqrt{(\sqrt{3})^{2}+1^{2}}=\sqrt{3+1}=2 \\
& |\vec{b}|=\sqrt{0^{2}+7^{2}}=7 \\
& \text { so } \vec{a} \cdot \vec{b}=(2)(7) \cos \theta
\end{aligned}
$$

But also $\vec{a} \cdot \vec{b}=(\sqrt{3})(0)+(1)(7)=7$, so

$$
(2)(7) \cos \theta=7 \rightarrow \cos \theta=1 / 2 \rightarrow \theta=60^{\circ}
$$

