

16 October 2023

Raise you hand if you have used writing like $x \in \mathbb{R}$ before.

A set is a collection of objects. In this class, we will mostly be interested in collections of vectors (collections of points!). For a finite set, you can just list them. Example: $S = \left\{ \begin{pmatrix} 3 \\ 6 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \end{pmatrix} \right\}.$

For an infinite set, it's often better to use "set-builder" notation. Example: 0

 $A = \left\{ \begin{pmatrix} 5\\ y \end{pmatrix} : y \ge 0 \right\}.$

Some specific sets have their own symbols: \mathbb{N} is the set of all natural numbers. \mathbb{R} is the set of all real numbers. \mathbb{R}^2 is the set of all points on the xy-plane OR the set of all 2D vectors. \mathbb{R}^3 is the set of all points in 3D space OR the set of all 3D vectors.

The symbol \in is used to show that an objects belongs in a set: $5 \in \mathbb{N}$ $[2, 10.1] \in \mathbb{R}^2$ $5 \in \mathbb{R}$

 $egin{array}{c} 1 \ \pi \end{array}$ $\sqrt{2}$

 $[0,0,0] \in \mathbb{R}^3$

Lincar compinations

A linear combination of some vectors is any sum of scalar multiples of those vectors. • In symbols, \vec{u} is a linear combination of \vec{v} and \vec{w} if $\vec{u} = a\vec{v} + b\vec{w}$ for some numbers a and b.

• For more vectors, \vec{u} is a linear combination of $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_n}$ if for some numbers S_1, \ldots, S_n .

 $\vec{u} = s_1 \vec{v_1} + s_2 \vec{v_2} + \dots + s_n \vec{v_n}$

Lincar complinations

those vectors. In symbols, \vec{u} is a linear combination of \vec{v} and \vec{w} if for some numbers a and b.

 $\vec{u} = a\vec{v} + b\vec{w}$

Example 2: $\begin{bmatrix} 5\\ 24 \end{bmatrix}$ cannot be written as a linear combination of $\vec{v_1} = \begin{bmatrix} 5\\ 1 \end{bmatrix}$ and $\vec{v_2} = \begin{bmatrix} 10\\ 2 \end{bmatrix}$. Why? Equations:

Piclures:

The "span" of $\vec{\mathbf{v}}$ and $\vec{\mathbf{w}}$ is the set of all their linear combinations.

$a\vec{\mathbf{v}}+b\vec{\mathbf{w}}$

Let a and b vary over all real numbers

from 3Blue1Brown — youtu.be/k7RM-ot2NWY

In symbols, the span of \vec{v} and \vec{w} is the set $\{a\vec{v} + b\vec{w} : a, b \in \mathbb{R}\}.$

This could be

- \checkmark just the origin (here $\vec{v} = \vec{w} = \vec{0}$).
- a line through the origin (here $\vec{w} = s\vec{v}$ for some $s \in \mathbb{R}$).

Question: What does

 $\left\{ \vec{v} + b\vec{w} : b \in \mathbb{R} \right\}$

look like?

a plane. In 2D, the plane is "everything". In 3D, a plane is like an infinite flat sheet of paper.

Sometimes it's easiest to describe a shape using an extra variable in addition to x and y (and z in 3D).

Example 1 $\begin{cases} x = 6\cos(t) \\ y = 6\sin(t) \end{cases}$

Example 2 $\begin{cases} x = 9^t \\ v = 3^t \end{cases}$

Example 3 $\begin{cases} x = 2 + t \\ y = 4 - t \end{cases}$

Example 3 describes a straight Line.

equation

the variable t is a parameter (sometimes s is used instead).

A vector parallel to a line is called a **direction vector** for that line.

The line through point \vec{p} parallel to the vector \vec{d} can be described by the

$$\vec{r} = \vec{p} + t \, \vec{d}$$

This whole slide is good for 2D or 3D!

In 3D, the single vector equation $\vec{r} = \vec{p} + t \, \vec{d}$ is really the three equations:

This is another common format for the for the line through (x_0, y_0, z_0) parallel to $\vec{d} = [a, b, c]$.

 $\begin{cases} x = x_0 + at \\ y = y_0 + bt \\ z = z_0 + ct \end{cases}$

You will need to be able to work *both* visually *and* with equations/symbols about

Iines in 2D

Iines in 3D

planes in 3D

and is parallel to the vector [5,1,6].

Creating an equation for a line is "easy" when you are given

- a point on the line and
- a direction vector. 0

It can be harder when you have to figure out one or both of those from other information.

Task 1: Give an equation for the line L that goes through the point (1,0,1)x = 1 + 5l, y = l, z = 1 + 6l

is parallel to the line plied by b). Line through (6,2,1) parallel to [2,4,-1] is

Remember: Line through point \vec{p} with direction vector d has equation $\vec{r} = \vec{p} + td$.

Give an equation for the line L_1 that goes through the point (6, 2, 1) and

L₂: x = 4 + 2t, y = -1 + 4t, z = 5 - t. Direction vector of L2 is [2,4,-1] (that's what's multi-Using this as d for L1 will make the lines parallel!

x = 6 + 2t, y = 2 + 4t, z = 1 - t.

Two lines in 2D must be one of these:

- the same line,
- intersecting at exactly one point,
- o parallel.

Two lines in 3D must be one of these:

- the same line,
- intersecting at exactly one point,
- parallel (definition: having parallel direction vectors),
- skew (definition: not fitting any of the previous three categories!).

In 2D, the only way two lines can have no points in common is when the lines are parallel.

direction vectors), the previous three categories!).

Are the lines $L_1: \quad x = 2 - t, \quad y = 1 + 2t, \quad z = 4 + t,$ x = -1 + s, y = 7 - 3s, z = 7 + s L_2 : intersecting, parallel, or skew? If they intersect, find the point where they intersect. Intersect at (-1, 7, 7). (This is l = 3 and s = 0.)Warning: these could be written $L_1: \quad x = 2 - t, \quad y = 1 + 2t, \quad z = 4 + t,$ $L_2: \quad x = -1 + t, \quad y = 7 - 3t, \quad z = 7 + t$ but the task would be the same.

out loud as "A dot B"). It is a number that can be computed as either • $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$ Or

• $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos(\text{angle between } \vec{a} \text{ and } \vec{b}).$

The **dot product** of two vectors $\vec{a} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$,

also called the scalar product or inner product, is written as $\vec{a} \cdot \vec{b}$ (said

Using • $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + \cdots$ • $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos(\text{angle between } \vec{a} \text{ and } \vec{b})$ together, we can find the angle between vectors.

Example: Find the angle between $\langle \sqrt{3}, 1 \rangle$ and $\langle 0, 7 \rangle$.

 $|\vec{a}| = \sqrt{(\sqrt{3})^2 + 1^2} = \sqrt{3+1} = 2$ $|\vec{b}| = \sqrt{o^2 + 7^2} = 7$ $\vec{b} = \sqrt{b^2 + 7^2} = 7$ $\vec{b} = (2)(7)\cos\theta.$ But also $\vec{a} \cdot \vec{b} = (\sqrt{3})(0) + (1)(7) = 7$, so $(2)(7)\cos\theta = 7 \rightarrow \cos\theta = 1/2 \rightarrow \theta = 60^{\circ}$

